Phonetically complete neutralization in Mankiyali

Jonathan C. Paramore & Adeline Sui

Department of Linguistics

FASAL 15 – UT Austin

Generative Phonology

Chomsky & Halle (1968), Kenstowicz & Kisseberth (1979)

Usage-based Phonology (Exemplar Theory)

Overview of the Talk

- Research Question:
 - Is there any evidence that a formal phonological grammar exists that is separate from the lexicon?
- Two experiments demonstrating phonetically complete neutralization of a vowel nasality contrast before nasal suffixes in Mankiyali
 - Experiment 1: Nasality is neutralized on the vowels.
 - Experiment 2: No coarticulatory differences on preceding segments.
- Can Exemplar Theory model this phonetically complete neutralization?

Background on Mankiyali

- Spoken by ~500 people
- Danna & Dameka two remote villages in Khyber Pakhtunkhwa
- Experiment Participants
 - 36 male native speakers
 - Fluent in Hindko, Pashto, and Urdu

Mankiyali Phonology

		Front		Central			Back			
		short	long	nasal	short	long	nasal	short	long	nasal
High	tense	i	ii	ĩi					uu	ũũ
	lax	I	II	ĩi				υ		
Mid	tense	e	ee					0	00	õõ
	lax									
Low	tense							Λ		
	lax								aa	ãã

Mankiyali Phonology

Vowel Nasality is impressionistically described as neutralized before nasal suffixes

```
[dɪi] giant.NOM [dī̃-η] giant-GEN
[dī̃i] pine firewood.NOM [dī̃-η] pine firewood.GEN
```

But, is this neutralization phonetically complete?

Experiment 1

- Research Question: Is nasality completely neutralized on the vowel itself?
- Participants and stimuli
 - 20 Mankiyali speakers
 - 51 tokens sourced from 4 conditions

CVV (21)	CVV (19)	CVV-N (4)	CÑÑ-N (7)
kii 'some, few'	kĩi 'insect'		kii-η 'of the insect'
guur 'brown'	gũũ 'feces'		gũū-η 'of the feces'
baa 'a leg/arm disease'	bãa 'arm' (F.SG)	baa-η 'of the disease'	
poo 'soil'	põõts 'approach'	poo-η 'of the soil'	

Experiment 1: Measurements & Procedure

- Procedure
 - Recorded in a quiet room in Danna
 - Words presented using Urdu script
 - Each word produced 4 times
- Nasalance: A^n $A^n + A^o$
- Other correlates to nasality
 - F1 modulation (Shosted et. al., 2012; Carignan, 2017)
 - Breathiness (Garellek et. al., 2016)

Experiment 1: Analysis

- Nasalance: measured at 11 equidistant time points across each vowel.
- F1 modulation: F1/F3 ratio at four equidistant time points across the middle 40% of each vowel (Monahan & Idsardi, 2010).
- Breathiness: z-scored H1*-H2* at four equidistant time points across the middle 40% of each vowel.

Experiment 1: Results

Takeaway: No evidence for a difference in nasalance between CVV-N and CVV-N

Experiment 1: Results

■ Takeaway: No evidence for difference in F1/F3 ratio between CVV-N and CVV-N

Experiment 1: Results

Takeaway: No difference in z-scored H1*-H2* between CVV-N and CVV-N

Experiment 2

- Research Question: Is there evidence of incomplete neutralization on adjacent segments?
- Participants and stimuli
 - 16 additional Mankiyali speakers
 - 38 tokens sourced from 4 conditions

CVVGVV (11)	CVVGVV (8)	CVVGVV-N (11)	CVVGVV-N (8)
biwaa 'marriage'	sɪɪʊ-ãa 'I make wet' (M.SG)	bιιναα-η 'of marriage'	sɪιυ-ãã-η 'I will make wet' (F.SG)
	raavãã 'beans'		rαανᾶα-η 'of beans'
paavii 'table legs'		paavii-η 'of table legs'	
suuvii 'needle'	tງິດຄຸນ 'squashes' (M.PL)	suuvii-η 'of the needle'	tງິນບໍາີ່-ຖ 'of squashes' (M.PL)

Experiment 2: Measurements, Analysis & Procedure

- Procedure
 - Same as experiment 1
- Nasalance: A^n $A^n + A^o$
- Analysis
 - Nasalance measured at 11 equidistant timepoints
 - 11 points for each of the segments in the VVGVV sequence.

Experiment 2: Results

Takeaway: No difference in nasalance found on preceding segments

- Can Exemplar Theoretic Models account for phonetically complete neutralization of vowel nasality in Mankiyali?
- What we do know: **phonetically incomplete neutralization** supports exemplar theory.

```
/ki-mo/ 'tree'-PART \rightarrow [kimo] \mu dur of [i]: 50 ms /ki/ 'tree' \rightarrow [kii] \mu dur of [ii]: 125 ms /kii/ 'key' \rightarrow [kii] \mu dur of [ii]: 157 ms
```

- Generative Phonology: phonological neutralization should always lead to phonetically complete neutralization.
- Exemplar Theory: the connection of [kimo] 'also tree' with [kii] 'tree' influences its pronunciation.

- But what about phonetically <u>complete</u> neutralization?
 - The generative framework easily accounts for it for the same reason it cannot account for phonetically incomplete neutralization.
- Exemplar Theory: For the same reason it can account for incomplete neutralization, the theory is unable to account for phonetically complete neutralization.

- Consider the complete neutralization of vowel nasality in Mankiyali:
 - Phonetic pressure to nasalize 'pre-N' vowels.
 - Oral bases should influence the realization of these pre-N vowels.

Prediction: the neutralization of nasality should be incomplete.

- It's possible that token frequency could be manipulated to generate complete neutralization.
 - But this would likely require some undesirable assumptions to achieve it
- To account for phonetically complete neutralization of nasality in Mankiyali
 - There needs to be some formal system **separate from the lexicon** in which the weight of different pressures can be calibrated.
 - Eliminativist exemplar models explicitly reject formal mechanisms of this kind.

References

Bybee, Joan. (2001). Phonology and language use. Cambridge: Cambridge University Press.

Carignan, Christopher. (2017). Covariation of nasalization, tongue height, and breathiness in the realization of F1 of Southern French nasal vowels. *Journal of Phonetics* 63, p. 87-105.

Chomsky, Noam & Morris Halle. (1968). The sound pattern of English. New York: Harper & Row.

Garellek, Marc, Amanda Ritchart, & Jianjing Kuang. (2016). Breathy voice during nasality: A cross-linguistic study. Journal of Phonetics, 59. p. 110-121.

Goldrick, Matthew & Jennifer Cole. (2023). Advancement of phonetics in the 21st century: Exemplar models of speech production. Journal of Phonetics, 99.

Kenstowicz, Michael & Charles Kisseberth. (1979). Generative phonology: description and theory. New York: Academic Press.

Johnson, K. (2007). Decisions and mechanisms in exemplar-based phonology. In M. J. Solé, P. Beddor, & M. Ohala (Eds.), *Experimental approaches to phonology: In honor of John Ohala* (pp. 25–40). Oxford: Oxford University Press.

Monahan, Philip J. & William J. Idsardi. (2010). Auditory sensitivity to formant ratios: Toward an account of vowel normalization. *Language and Cognitive Processes*, 25(6). p. 808-839.

Shosted, Ryan, Christopher Carignan, & Panying Rong. (2012). Managing the distinctiveness of phonemic nasal vowels: Articulatory evidence from Hindi. *The Journal of the Acoustical Society of America* 131. p. 455-465.

Appendix

- There is a way in which Exemplar theory can account for the Mankiyali data:
 - **Token frequency** is a mechanism that exists within Exemplar Theory to control the relative strength of processes spreading across the lexicon.
 - For frequency effects to generate complete neutralization here...

Appendix

- There are some issues with this analysis:
 - It relies on morphologically related bases (e.g., [dil] 'giant.NOM') influencing inflectional variants like [dil-η] 'giant-GEN' to the same degree as inflectionally related forms like [poo-η] 'son-GEN'.
 - Exemplar theory assumes the opposite: semantically related forms have the strongest connections (e.g., Bybee, 2001; Johnson, 2007).
 - The pattern of complete neutralization is uniform across all 15 nominative-genitive pairs tested.
 - □ For a frequency-based account to hold, each of these 15 pairs would have to exhibit the exact same asymmetry: a rare NOM form and a frequent GEN form.